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1 Introduction

This paper will be an overview of various works in the Private Information Retrieval (PIR) field. We aim to
explore the main findings of each paper, lower-level primitives involved, as well as compare the differences
between them.

1.1 Private Information Retrieval Problem

In private information retrieval (PIR) a client wishes to request data from an unencrypted server while hiding
the index which is being queried from the server. The trivial O(n) solution (where n represents the database
size) in both communication and client-computation, would be to have the server send the entire database
to the client and for the client to find the index they need locally. Through various forms of preprocessing
of the database or generating hints the retrieval can be done more efficiently and with less communication.

2 Private Information Retrieval with Sublinear Online Time

Corrigan-Gibbs and Kogan’s work achieves sublinear online time for PIR through the use of a second server
for providing hints [1]. The scheme utilizes the primative of shifting puncturable pseudorandom sets, which
is a shifting property built on-top of puncturable pseudorandom sets in order to minimize the client storage
and communication cost of hints during the setup. Their work then uses fully homomorphic encryption to
convert the two servers approach into a single-server one.

2.1 Primitive: Puncturable pseudorandom sets

Syntax

Let K be a key-space and Kp be a punctured-key space. Puncturable pseudorandom consists of the following
three operations:

• Gen(1λ, n) → sk ∈ K

• Punc(sk, i) → skp ∈ Kp

• Eval(sk) → S ⊆ [n]

Where sk is a secret key. Note that Gen(1λ, n) is a randomized algorithm while Punc(sk, i) and Eval(sk)
are deterministic algorithms.

Properties

Correctness

Let s(n) : N→ N where s(n) ≤ n (we can think of the output of s(n) to be the size of the punctured subset)
and z denote the randomness of Gen(1λ, n)→ sk. With probability 1

z ,

1.
(
S∈[n]
s(n)

)
2. if Punc(sk, i)→ skp, then Eval(skp)→ S/{i}

The correctness of a puncturable pseudorandom set states that when we puncture a set with an index, that
punctured set no longer contains the index it was punctuate with.
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Security

We will analyse the security by calculating the probability that an adversary A can guess the index i of a
punctured pseudorandom subset ψ with size s(n) : N→ N.
The guessing game will be played like such:
A challenger will use Gen(1λ, n) to generate a secret key sk then Eval(sk) to generate a set S. The
challenger then randomly select an x∗ from S. With this x∗ index, the challenger punctures the secret key
using Punc(sk, x∗) to generate skp ∈ Kp. The challenger sends both 1λ and skp to the adversary A. The
adversary will win the game if they guess the integer x ∈ [n] where x = x∗, we will denote this event Wλ,n.

We can describe the probability that A by guessing the index of ψ, which is the probability that the adversary
wins the guessing game, as:

PSAdv[A, ψ](λ, n) := Pr[Wλ,n]−
1

n− s(n) + 1

Since the adversary has s(n) + 1 elements in the resulting set, and thus has n − s(n) + 1 elements all with
equal chance of being x∗.

2.2 Primitive: Shifting puncturable pseudorandom sets

Syntax

A shifting puncturable pseudorandom set is a built by encapsulating a puncturable pseudorandom set and
adding GenWith and Shift capabilities. Let ψ = (Gen,Punc,Eval) be a pseudorandom punctured set, with
associated key space K and punctured key space Kp. Shifting puncturable pseudorandom sets will be defined
with the operations

1. Gen′(1λ, n) samples a random subset of [n], ∆, and outputs sk ← (ψ.Gen.(1λ, n),∆)

2. Punc′((sk, i), δ) outputs skp ← (Punc(sk, i−∆),∆)

3. Eval′((sk,∆))→ S ⊆ [n] where S ← {i+∆ : i ∈ Eval(sk)}

4. Shift((sk,∆), j)→ sk′ where sk′ ← (sk,∆+ j mod n)

5. GenWith(1λ, n, i) outputs Shift(sk, i − i′) where sk ← Gen′(1λ, n) and i′ is randomly choosen from
Eval(sk).

Note that the shifting puncturable pseudorandom set ψ′ = (Gen′,Punc′,Eval′) will have the associated key
space of K × N and punctured key space of Kp × N.

Properties

Correctness

Not only does this follow from the puncturable pseudorandom set but we can additionally add that

1. For every λ, n ∈ N, then the two are identitical
i← [n] randomly

sk← GenWith(1λ, n, i)

output(i, sk)

 ≡

sk← Gen′(1λ, n)

S ← Eval′(sk)

i← S randomly

output(i, sk)


Security

Follows from the security of the puncturable pseudorandom set. We let ψ be a puncturable pseudorandom
set and ψ′ be a shifting puncturable pseudorandom set. Let A be the adversary for ψ′ and B be the adversary
for ψ. Given the set up as before, set sk′p ← (skp,∆) where ∆ ← [n] randomly. Then when running A on
sk′p, we get j ∈ [n], and then have B output i← j−∆. B wins with same probability as A thus the extension
is secure.
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2.3 Single query offline/online PIR Scheme

Syntax

Offline/online PIR is made up of 5 algorithms: Setup, Hint, Query, Answer, and Reconstruct

• Setup(1λ, n) → (ck, qh), takes the security parameter and database length to output a client key ck
and a hint request qh.

• Hint(x, qh)→ h, takes in a database (a string of 0 and 1s), a hint request, and outputs a hint.

• Query(ck, i)→ q, takes in a client key ck and an index i, and outputs a query q

• Answerx(q)→ a, takes in a query q and gets access to an oracle that takes an index j and outputs the
j-th bit of a database xj .

• Reconstruct(h, a)→ xi that takes a hint h and answer a to output a bit xi.

Note that Setup and Query are randomized algorithms while Hint, Answer, and Reconstruct are deterministic
algorithms.

Properties

Correctness

We need that for any λ, n ∈ N, x ∈ 0, 1 (the database), and i ∈ [n], the index, that:

Pr
[
Reconstruct(h, a) = xi

]
= 1

For h and a derived with where (ck, qh) ← Setup(1λ, n), h ← Hint(x, qh), q ← Query(ck, i), and a ←
Answerx(q). Informally, when we query an index with a hint, the answer given (with the correct hint)
should reconstruct to the bit at that index.

Security

The security of offline/online PIR is defined as the following. Let λ, n ∈ N where λ is the security parameter
and n is the size of the database. Let i, j ∈ [n] be indices for the distributions. We define a distribution
Dλ,n,i as:

Dλ,n,i :=

{
q :

(ck, qh)← Setup(1λ, n),

q ← Query(k, i)

}

We can describe the advantage for an adversary A as

PIRadv[A,Π] := max
i,j∈[n]

{Pr[A(1λ, Dλ,n,i) = 1]− Pr[A(1λ, Dλ,n,j) = 1]}

For the security proof we analysis the differences in probability of winning given a difference in distribution
of a single query.

2.4 Multi-querry offline/online PIR Scheme

Syntax

Offline/online PIR is made up of 5 algorithms: Setup, Hint, Query, Answer, and Reconstruct

• Setup(1λ, n) → (ck, qh), takes the security parameter and database length to output a client key ck
and a hint request qh.
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• Hint(x, qh)→ h, takes in a database (a string of 0 and 1s), a hint request, and outputs a hint.

• Query(ck, i)→ (ck′, qleft, qright), takes in a client key ck and an index i, and outputs an updated client
key ck′, query for left server qleft, and right server qright.

• Answerx(q)→ a, takes in a query q and gets access to an oracle that takes an index j and outputs the
j-th bit of a database xj .

• Reconstruct(h, aleft, aright)→ (h′, xi) that takes a hint h and answers from left and right server aleft
and aright to output a new updated hint h′ and the bit xi from index i of the database.

Properties

Correctness

For all requests i1, ..., iT ∈ [n]T , the following holds true

Pr
[
Reconstruct(h, aleft, aright) = xit

]
= 1

for t = 1, ..., T , where (ck, qleft, qright)← Querry(ck, it), aleft ← Answerx(qleft), and aright ← Answerx(qright).

Security

We create two games, and we are secure if the advantage the adversary has is negligible. The one game
servers for the (offline server / hint server) and the second game is for the right server (online server / query
server). Note that this setup assumes no collusion (shared information) between the two servers. We define
the advantage of the adversary A as

PIRadv[A,Π](λ, n, T ) := max
σ∈{right,left}

|Pr[Wσ
λ,n,T,0]− Pr[Wσ

λ,n,T,1]|

where W left
λ,n,T,b is the event that the adversary outputs b′ = 1 on the left-server game, and W right

λ,n,T,b for the
win on the right-server game.
We define the left server game as:

• (ck, qh) ← Setup(1λ, n)

• st → A(1λ, qh)

• For t = 1, ..., T :
(st, i0, i1) ← A(st)
(ck, qleft, qright) ← Query(ck, ib)
st ← A(st, qleft)

• b′ ← A(st)

and the right server game as:

• (ck, qh) ← Setup(1λ, n)

• st → A(1λ)

• For t = 1, ..., T :
(st, i0, i1) ← A(st)
(ck, qleft, qright) ← Query(ck, ib)
st ← A(st, qright)

• b′ ← A(st)
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2.5 Construction: Two-server PIR with sublinear online time

The scheme is defined as π= (Setup, Hint, Query, Answer, and Reconstruct). The construction for two-server
PIR would be as follows.
In the offline phase, the following are run

• Setup(1λ, n) which will initialize the client key and query. The client will run this to acquire ck and
qh. qh will be the list of shifting puncturable pseudorandom set, randomly selected from [n].

• To generate the hints, first the client will pass qh to the hint server. The hint server will then run
Hint(qh, x) which takes in the database and qh generated from the client, and uses this to generate
a list of hints, which are parities of each of the subsets. In other words, given m shifting puncturable
pseudorandom set, (S1, ..., Sm), hint will evaluate the parity of the given set keys, and return this as
(h1, ..., hm) where hi corresponds to the parity of bits at indexes in Si.

In the online phase, given the client would like bit at index ipir, which we denote xipir , the following
happens:

• The client needs to generate a query to send to the online server. In order to do this, it takes ipir and
it’s client key, this runs the probabilistic function Query(ck, ipir). With probability 1− s−1

n , where s
is the size of the subsets, it will puncture the puncturable set key containing i, sqq, by i, the resulting
set key if evaluated now does not contain i. Moreover, with probability s−1

n , we will randomly select
an element of the resulting set where i′ ̸= i. We can then output the resulting punctured set key,
q = Punc(skq, ipunc) where ipunc = ipir or i′ depending on where the probability took us.

• The client then sends this q to the online server. The online server will then run answer on punctured
set key. During Answer(q), the server will evaluate this punctured set key and calculate the parity of
the bits at the indexes of the resulting set. This parity, which we will denote a, is then sent back to
the client.

• The client now uses a, the parity of the punctured subset and hj , the parity of the non-punctured subset
to calculate the bit xipir . The client can now calculate using both h and a with Reconstruct(h, a),
which calculates the difference in parity between hj and a (mod 2) to output the bit xipir .
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This construction runs into the issue where with probability s−1
n , we will be puncturing the subset with

ipunc ̸= ipir. Therefore the information given to us by the online server will not be useful in calculating xipir .
By setting the number of subsets, m = nlog(n/s), we can drive this probability to 1/n. By running the
scheme O(λ) times we then drive this probability of failure to negl(λ), bringing us computational security.
This construction has a big downside though: we cannot achieve this security if we need to request a bit i′

in the same Sj , where ipir ∈ Sj , since the online server can then, with high probability, figure out that we
are computing the parity of Sj \ {ipir} the first time and Sj \ {i′} the second, then use this to realize the
client wants {ipir, i′}. This brings us to a construction adding a ”refresh” feature

2.6 Arbitrary Queries Two-server PIR with sublinear amortized time

The scheme is a modified version of the above one. We set m =
√
nlogn and each subset is roughly size

√
n.

Once the client uses Sj to get an index i where i ∈ Sj , we “refresh” the hints. The online server interactions
with the clients remain the same as in the previous construction.

The offline server will have a refresh feature added to it, where it chooses a new set, Snew, to replace Sj such
that it preserves the distribution of the sets. The problem becomes how to sample this random elements
such that the distribution holds. Choosing a fully random set with random elements means that the amount
of sets containing i will decrease. Instead, the set can be a random set with the constraint that one element
is i and the other elements are randomly selected. This conserves the randomness while insuring that the
distribution of elements remains the same.

3 PIANO

PIANO [2] also utilizes a hint prepossessing set-up. The hints are split up into three different data-structures:
a primary table, replacement entries, and backup table. The prepossessing happens in chunks, allowing for
lower communication costs. The replacement entries allow for perfect correctness and backup table allows
for arbitrary number of queries.

3.1 Primitive: Puncturable Pseudorandom Function (PRF)

The scheme uses a combination of these chunks and PRFs in order to minimize client storage. The scheme
utilizes PRFs to achieve client side storage of Õ(

√
n).
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Security

A PRF F is secure if it is indistinguishable from a truly random function. A truly random function is
randomly selected from all possible functions from Fn→h : {0, 1}n → {0, 1}h. For a PRF h, h(x) = y does
not tell you about h(x′) = y′. More formally, a PRF, F is secure if for all polytime adversaries, A

AdvPRF [A,F ] = |Pr[EXP (0) = 1]− Pr[EXP (1) = 1]| ≤ negl

where the experiment is between a challenger and adversary A, the adversary gets to ask as many responses
(f(x)) for any input x. A bit b is randomly assigned to 0 or 1, and if b = 0, the challenger will respond with
f(x) where f is a chosen from a subset/family of Fn→h, otherwise if b = 1, f is chosen randomly from Fn→h.
The challenger using the outputs will attempt to distinguish whether b is 0 or 1. If the adversary is correct
with a more than 1

2+ negligible, or its advantage is more than negligible, than the PRF is not secure.

3.2 Single-Server Scheme

Given a server of size n, this scheme splits up the indices into
√
n chunk, where the jth chunk contains the

indices {j
√
n, ..., (j + 1) ·

√
n − 1}. The scheme splits the hints into three tables/data: the primary table,

the replacement entries, and backup tables.

Additionally, the client downloads in this chunk method to minimize the amount of local storage needed
when calculating parity, this is accomplished since the primary table, replacement entry, and backup table
only depend on the chunk.

Syntax

The syntax is split up into 3 methods:

1. setup(λ, κ)

2. query(i)

3. refresh

Setup creates the primary table, replacement entry, and backup table. Query computes the bit at the index
provided, and refresh updates the primary table using the replacement entries.

Security Proof

We will be using a simulation proof, which works its way from an ideal simulation (random distribution) to
the real simulation (what the scheme does) and proves that the view from the adversary remains the same
through a series views involving small mutations from one another (called hybrids). We will start with the
ideal simulation where Dn is the distribution of the random sets. Then we have Hyb1, Hyb2 and Real*.

Ideal:

• Offline: Nothing is done

• Online: For a query i, the client sends a random set from Dn, to A

Hyb1

• Offline: Client samples random sets S1, ..., SM1
← D

[M1]
n

• Online: For each online round (describing the number of queries) t, A chooses a query xt. The client
samples S ← Dn such that xt ∈ S and a random index r from the chunk of xt. The client then sends
(S/{xt}) ∪ {r}

Hyb2
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• Offline: Client samples random sets S1, ..., SM1
← D

[M1]
n

• Online: For each online round (describing the number of queries) t, A chooses a query xt.

1. Client selects Sj such that xt ∈ Sj and j is smallest index in [M1] and denotes this set S∗. If no
such Sj exists client samples a set randomly using Dn such that xt ∈ S∗.

2. Client samples r from chunk of xt. Client sends (S
∗/{xt}) ∪ {r}

3. Client then sets up the refreshing by sampling a set S′ randomly from Dn such that xt ∈ S′, if
the client used a set Sj for S∗, replace Sj by S′

Real∗

• Offline: Client samples random sets S1, ..., SM1
← D

[M1]
n and Si,j → Dn, for i ∈ {0, 1, ...,

√
n − 1},

j ∈ [M2]

• Online: For each online round (describing the number of queries) t, A chooses a query xt.

1. Client selects Sj such that xt ∈ Sj and j is smallest index in [M1] and denotes this set S∗. If no
such Sj exists client samples a set randomly using Dn such that xt ∈ S∗.

2. Client samples r from chunk of xt.

3. Client sends (S∗/{xt}) ∪ {r}
4. Client then sets up the refreshing by consuming an unconsumed set of Si∗,1, Si∗,2, ..., Si∗,M2

, and
replaces the j − th set in the local sets with S′ = (Si∗,j/Si∗,j[i∗]) ∪ {xt} for the first unconsumed

set Si∗,j . If no such set exists, then refresh sampling a set S′ randomly from Dn such that xt ∈ S′.
If the client used a set Sj for S∗, replace Sj by S′

From the ideal simulation to the first hybrid one, the view from the adversary is the same, since the sampling
of sets does not change between the chunking or a random set Sj , since there are the same amount of elements
in Sj each with same probability based on Dn distribution by the replacement of i with and random index
r (since it is possible that i = r).

From Hyb1 to Hyb2 we tackle choosing the set based on the chunk rather than sampling a random set and
replacing an index. We also tackle refreshing the sets but without use of the backup table (and replacing
this with randomness)

From Hyb2 to Real∗ we add in the refresh through the backup table rather than through randomness.

The only difference between Real∗ and the Real simulation is that the Real simulation uses PRF’s rather
than random sets. Proving these are equivalent is trivial by the definition of pseudo randomness and will be
left out. Additionally, this scheme is secure under collusion of the servers too, and does not need to be run
in parallel like the PIR scheme to achieve negligible security advantage.

4 PANDAS

PANDAS [3] expands upon PIR by creating a multi-client PIR scheme that allows bounded-collusion between
the clients and provides anonymity. Additionally, this paper introduces and utilizes concepts from oblivious
RAM (ORAM) and doubly-efficient PIR (DEPIR).

4.1 Oblivious RAM (ORAM)

The oblivious RAM problem is about hiding access patterns. It is used when there is untrusted ram running
a series of instructions. An ORAM scheme has the syntax of:

• Setup(1λ, DB) → ck, State

9



• Access(op, addr, val) which outputs a value if the op is read, otherwise if op is write then it writes at
the specified addr with the value inputted

An ORAM scheme is considered secure when

Pr[b′ = b] =
1

2
+ negl(λ)

For the game below between a challenger and PPT adversary:

• Adversary sends the challenger a datebase, DB

• Challenger runs the setup on the DB to obtain a server state State, client state ck, and sends the server
state State to the adversary, and picks a random bit b← {0, 1}.

• For some poly in the security parameter number of times:

– Adversary sends two instructions (op, addr1, val1) and (op, addr2, val2) to the challenger. Note
that for each instruction in the series, the operation stays consistent between the two.

– Challenger executes the operations at the specified address (and writes the value if its a write
operation) and sends the access pattern to the adversary

• Adversary outputs bit b′

4.2 Doubly Efficient PIR (DEPIR)

DEPIR is sometimes referred to as PIR with preprocessing. With the preprocessing, the scheme is able
to achieve sub-linear computational work on the server. The doubly part of the efficiency comes from the
sub-linear computation efficiency on both the server and client side.

4.3 Primitive: Locally Decodable Codes (LDC)

We formally define Locally Decodable Codes as

Enc: ΣN → ΣM deterministically maps message input of size N (referred to as the message length) into
code word of size M (referred to as the block length). Where M > N .

Query: Is a probabilistic algorithm which on input i ∈ [N ] will generate k indices, j1, ...., jk ∈ [M ] and a
decoding state st

Dec: Is a probabilistic algorithm which on input Cj1 , ...., Cjk ∈ [M ] and st, outputs mi

These locally decodable codes can be utilized with Reed-Muller codes and used to build a bounded PIR
construction. Due to the linearity of underlining LDC’s, this is only secure for a bounded B number of
queries.

4.4 Possible (wrong) Attempts

There are four previous attempts before the scheme for PANDAS was reached.

1. All clients share 1 key, this gave an efficient run time, but there were no collusion protections at all. If
one client colluded the server would be able to figure out which information was requested. This did
however provide anonymity. By sharing 1 key between clients, there is no distinguishable information
for a single client.

2. The clients each have separate keys. The information gets accessed privately with the clients keys.
This did reach the efficiency wanted with privacy, but provided no anonymity. The server could tell
which client accessed the encrypted information since the key it used was attached to that client. Each
client had a distinct key and therefore servers could tell clients apart from their queries.
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3. All clients have their own key and we introduce dummy access to hide which client is accessing. This
does lead to both privacy and anonymity; however, the approach has an inefficient linear runtime.

4. Client keys over several servers. This provides us with good runtime, privacy, and anonymity, but does
not hold up to the single-server set up.

There was another closer attempt which was also unsuccessful. It utilized concepts from ORAM, obscuring
access and the LDCs. The issue that arose from this attempt was the need for bogus calls in order to
maintain anonymity which again resulted in too high of a runtime.sla

4.5 PANDAS Scheme

Bounded Access PANDAS combines LDC + PRP, which has easy bogus reads for anonymity. This allows
for anonimity while maintaining a lower runtime. The downside is the need to bound the numbers of reads;
Since PRP is limited we need to refresh after a certain number of calls.

Unbounded access is possible since PANDA server is stateful. PRF needed to generate a new PRP, and
FHE is needed for a refresh with this PRP after “B” reads (since then we can make sure the server does not
learn PRP/PRF keys). This is effectively unbinding the number of queries by refreshing the security after
the bound is reached. This also needs a leveled FHE assumption which comes from an learning with error
(LWE) assumption to correctly ”refresh” the server without prior information on the previous PRF.

4.6 Read only Security Game

Security game overview:

1. Adversary generates two sequences of reads, R0, R1 (where each read specifies client, j, and an address,
addr).

2. We also make sure that if a client is corrupt that the read at that index is the same in both sequences
(preventing use of corrupt client to figure out which sequence is chosen).

3. The challenger chooses randomly, b, and selects Rb, one of the two read sequences. It sends the
adversary view of the servers and corrupted clients while executing the read operations.

4. The adversary outputs b′ and wins if it correctly guesses which sequence of reads the challenger exe-
cuted.

The winning advantage of the adversary is described as

AdvA(λ) = |Pr[b = b′]− 1

2
|

4.7 Public Encoding PANDAS

The idea for this is that we simply encodes a new database D̃B. Allowing us to have arbitrary requests.
Syntax:

• KeyGen(1λ, 1n, 1t, 1L) → (pk, ckj) generates the public key for encoding and secret client keys for
reads.

• Encode(pk, DB, lab) → (D̃B
1
... D̃B

j
) generates a newly encoded DB for every permutation of the

data.

• Query(ckj , addr, lab) → (q1, ..., qk) generates a list of points at the address for the given labeled
database

• Recover(ckj , lab, (D̃Bq1 ... D̃Bqk)) → val. Recover takes a series of points at the database (gotten
from query), and determines the corresponding value).

Note that KeyGen and Query are probabilistic algorithms while Encode and Recover are deterministic ones.
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4.8 Public-writes PANDA

Public-writes PANDA considers the setting of a public database where any client can preform read/write.
Although the values being written are public, the clients should remain anonymous. The scheme for public-
writes PANDA has write operations, but only grantees privacy for read operations. A malicious client can just
read the database after every operation, learning what was written. Using PANDA with public encoding
would be too inefficient as it would require (at least) linear time to update the encoded database. The
construction rather takes a similar form to that of hierarchal ORAM. That is to say the database is stored
in a sequence of Log L levels, where L = |DB|. Each level li consists of seperate instance of a read-only
PANDA with public encoding, and will contain at most Li = 2li database values. That is to say each level
contains 2 times more than the above it (if li = 0 is the top level).

4.9 Secret-writes PANDA

Secret-writes PANDA builds upon Public-writes PANDA and utilizes a prf for each client in order to ensure
that writes remain private. When writing at some location j in a database, a client can use her unique
PRF to write at PRF(j, c) and when reading some location j she then uses her perf to read at the largest
count where there exists a value at PRF(j, c) and then writes at PRF(j, c + 1). This approach does have
a downside of the server storage growing with the total number of writes, rather than the data size as the
database cannot delete old copies.

5 Towards DEPIR

This [4] work by Canetti, Holmgren, and Richelson explores developing a single-server PIR scheme where
the client has no update-able state, and the per query work of the client and server is sublinear in database
size.

This paper sets up three types of preprocessing: public preprocessing (randomness of preprocessing is public),
public client (long-term key is public, but not preprocessing), and designated client (where the client’s key is
hidden from the server). In all three cases, the client has no updateable state. They then provide a DEPIR
construction for the designated client case and show the preprocessing is doomed to fail for the public client
and public preprocessing case.

5.1 Formal DEPIR Definition

Syntax

• Keygen(1λ)→ a key k

• Process(k,DB ∈ ΣN )→ D̃B

• Query(k, i ∈ [N ])→ query q, and local state st

• Resp(q, D̃B)→ answer a

• Dec(k, st, a)→ DBi ∈ Σ

Correctness

For all DB ∈ ΣN and i ∈ [N ]

Pr[Dec(st, a) ̸= DBi] ≤ ϵ

Where K ← Keygen(1λ), Process(k,DB ∈ ΣN ) → D̃B, q, st ← Query(k, i), a ← RespD̃B(q). If ϵ = 0 then
we have perfect correctness. The security depends on which case we are in and is defined below accordingly.
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5.2 Designated Client

The results of this paper and constructions are for the designated client case where key is only known to the
client. There are two variants: the server does not know the database, and the server might know database
but not queried location.

Formal Designated Client Security Definition

A scheme π = (Keygen, Process, Query, Resp, Dec) is a Designated Client if for all PPT adversaries A,
there exists a simulator S where REALA,π ≈ IDEALA,S . We define REALA,π as:

(1) A → DB, D̃B ←Process(K, DB), K ← Keygen(λ, N)

(2) Repeat until A generates index i ∈ [N ] where q ← Query(K, i)

We define IDEALA,S as

(1) A outputs a database DB and obtains an encoded database from the simulator D̃B ← S(λ, DB).

(2) Repeat until A generates index i ∈ [N ] where q ← S()

In other words, the view of the adversary does not change between a the simulation and with a private key.

Trivial Scheme

Trivial scheme is to have D̃B to be D̃B(i) = DB(π(i)), where K = π is a permutation of the data. This is
similar to a one-time-pad but for PIR. We have one-round perfect correctness and security, that has O(n)
preprocessing and O(1) server work for the query.

5.3 Public Client & Public Preprocessingt

Public Client

The key is public, but the randomness used to generate the key remains private. This allows multiple clients
to query the server at the same time since it is a stateless setup. There are two variants again: one where
k is known before the database, and one where it is database is based on k. There is also another variant
where a private key is generated but only for use in databse processing step.

Public Preprocessing

In this case, the key and randomness to generate the key is public.

Formal Public Client & Public Preprocessing Security Definition

A scheme π = (Keygen, Process, Query, Resp, Dec) is a Designated Client if for all PPT adversaries A,
there exists a simulator S where REALA,π ≈ IDEALA,S . We define REALA,π as:

(1) A(K)→ DB where K ← Keygen(λ, N) and A obtains D̃B ←Process(K, DB),

(2) Repeat until A generates final output: index i ∈ [N ] where q ← Query(K, i)

We define IDEALA,S as

(1) A(K)→ DB where K ← S(λ, N) and A obtains D̃B ←S(DB),

(2) Repeat until A generates final output: A generates index i ∈ [N ] where q ← S()

The above is a security definition for public preprocessing if Process uses no additional randomness other
than K. The above a security definition for public client with secret preprocessing key if Keygen generates
an additional key that is used by process (and otherwise remains unknown).
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5.4 Primitive: LDC

This scheme similar to PANDAS utilizes LDCs and thus the protocol is only secure found a bounded B
number of queries from the linearity of LDCs.

5.5 Assumption: HPN

This assumption hidden permutation with noise problem (HPN) helps bring the designated client case from
bounded to unbounded number of queries. Addition to LDC but with added noise to the clients queries.
This prevents the attacks that were possible on the original scheme. The downside is with the addition of
noise, the security can no longer be perfect, and will be at maximum computational.

6 Doubly Efficient Private Information Retrieval and Fully Ho-
momorphic RAM Computation from Ring LWE

This [5] paper by Wei-Kai Lin, Ethan Mook, and Daniel Wichs explores the DEPIR problem by utilizing the
RingLWE assumption and prior work by Kedlaya and Umans to preprocess polynomials for fast evaluation
of queries. This not only speeds up the preprocessing step, but also allows for a more used assumption than
HPN from Towards DEPIR [4].

6.1 Constructions: FHE vs Ram-FHE

The primary issue with FHE is the evaluation time, since it is done by converting to circuits, the runtime
ends up being large than the |DB|. On the other hand, the runtime of Ram-FHE is dependent on the
runtime of the program.
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6.2 Construction: ASHE (Algebraic SHE)

The figure above depicts the working of SHE (Somewhat homomorphic encryption) to construct a DEPIR
setup. By picking specific parameters, the work of Kedlaya and Umans is utilized in a preprocessing step
to achieve N1+ϵ setup and polylog(N) evaluation runtime. The issue with SHE is we can’t preprocess for
encrypted inputs. This is worked through by utilizing ASHE, where we lift the polynomial to the ring (i.e.
reinterpret u ∈ Zd as an element of the ring R).

6.3 Updatable DEPIR

Uses same syntax as DEPIR except introduces update defined where:

D̃B
′ ← Update(D̃B, i, b): Takes as input a location i ∈ [N ] and a bit b. Uses random-access to the data

structure D̃B and updates it to D̃B
′
.

The update in construction works by having a hierarchy of L = log(N) levels where each level l contains a
pre-processed database, D̃Bl. In order to read, the client would make a query at each level of D̃Bl.
The construction utilizes binary search and has each level padded to insure that there is always worst case
searching (thus the run time does not reveal anything), and is based on hierarchal ORAM

Round Optimal Updatable DEPIR

To achieve Round Optimal Updatable DEPIR we rely on Ram-FHE and have the server run binary search
of the preprocessed database. By combining DEPIR and Ram-FHE we can round-optimal writing DEPIR.

7 Comparison

We will compare the differences each papers construction. For all comparisons, assume N is the size of the
database λ is the security parameter, and Oλ hides polylogarithmic λ factors.

Sublinear PIR [1] PIANO [2] PANDAS [3] Towards DEPIR [4] RingLWE DEPIR [5]

Servers 1 & 2 1 1 1 1

Comm. Complexity O(
√
N) O(

√
N) Oλ(polylogN) Oλ(polylogN) Oλ(polylogN)

Server Work O(N) O(
√
N) Oλ(N

ϵ · polylogN) Oλ(polylogN) Oλ(polylogN)
Clients Unlimited Unlimited Bounded Unlimited Unlimited
State No No Yes No No

Assumption FHE OWF FHE HPN RingLWE
Access R R R/W R R/W
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Runtime

Both Sublinear PIR [1] and Piano [2] have a
√
n amortized runtime for the server computation. But unlike

[4] and [5], [1] and [2] are not sublinear in both the client and server work as they require a large client
preprocessing (of the whole database) in order to generate the hints (i.e. do not meet DEPIR efficiency).

Memory

[1] and [2] require the client to hold onto hints: Sublinear PIR [1] requires
√
N , PIANO [2] requires a little

more with a small constant multiplied by
√
N (to store a backup table and replacement entries). Piano

has this extra memory due to its use of 3 different data structures which includes the backup table and
replacement entries. The primitives used to compress the database storage is pseudorandom functions for
PIANO and shifting pseudorandom puncturable sets in Sublinear PIR.

Collusion

The Sublinear PIR assumes no collusion in the offline/online server setup. If the servers colluded, the online
server could calculate the requested index by seeing which hint the request subset of indices came from.
In the single server setting, the FHE assumption protects against ‘self-colusion’. Therefore all the other
constructions work trivially under collusion since it is single server (thus lacks another server to collude
with).

Syntax

The syntax of the Sublinear PIR involves a setup, hint, query, answer and reconstruct, which breaks down
requesting an index into creating a correct query, and reconstructing the provided answer to the query. On
the other hand, PIANO just has a setup, query, and refresh in it’s syntax. Query handles both building
the query and construction the answer based on the servers answer. The syntax of both methods separate
refreshing into its own function. All the DEPIR constructions have a processing step to process the database
on the server side in order to obtain the double-efficiency in the per request computation work.

Security

The security games are either tackled through guessing games, where adversary has to guess the correct
index, and we show that the distribution of guesses remains the same regardless of what index the user
requests, or through simulations, where we argue that through small changes from the real situation to our
constructed ideal situation called hybrids, the adversary has the same view.
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